Supplementary Information

Highly Conductive Paper/Textile Electrodes Using Ligand Exchange Reaction-Induced in-situ Metallic Fusion

Sungkun Kang, Donghyeon Nam, Jimin Choi, Jongkuk Ko, Donghee Kim, Cheong Hoon Kwon, June Huh, and Jinhan Cho*

Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

*Address correspondence to jinhan71@korea.ac.kr.

а

Figure S1. (a) Molecular structures of TOABr, DETA,TREN, PAD-G1, and PAD-G2. (b) FTIR spectra of PAD-G2, PAD-G1, TREN, and TOABr-Au NPs. (c) ATR-FTIR spectra of (PAD-G1/TOABr-Au NP)_n and (d) (TREN/TOABr-Au NP)_n multilayers as a function of the bilayer number (n). In this case, the C-H stretching peaks at 2850 and 2920 cm⁻¹ originate from long alkyl chains of TOABr ligands, and on the other hand, the N-H stretching (at 3300-3500 cm⁻¹) and the N-H bending peaks (at 1640 and 1550 cm⁻¹) occur from amine groups of PAD-G1 or TREN. The scheme shown in the right side of (d) displays LbL assembly process based on ligand exchange reaction between TOABr and TREN.

Figure S2. Total thicknesses of (a) $(TREN/TOABr-Au NP)_n$, (b) $(PAD-G1/TOABr-Au NP)_n$, and (c) $(PAD-G2/TOABr-Au NP)_n$ multilayers as a function of the bilayer number (n). The insets show the cross-sectional FE-SEM images of multilayers.

TREN in EtOH

Binding Energy (eV)

Binding Energy (eV)

Binding Energy (eV)

	Elements	Au4f 7/2		Au4f 5/2		C1s	C1s		N1s		O1s	Br3d	
	Phase	Au	Au-N	Au	Au-N	C-C	C-N	C-N ⁺	N-C	N+-C	N-Au		
Linker	B.E (eV)	83.9	84.7	87.6	88.3	284.8	285.6	287.1	399.5	400.3	401.5	532.0	-
TREN	ar (%)	18.97	5.98	14.99	4.26	13.36	12.53	9.91	3.29	3.48	0.43	10.0	2.8
PAD G1	ar (%)	10.99	4.11	8.18	3.32	9.42	23.64	17.34	3.97	4.68	1.15	12.4	0.7
PAD G2	ar (%)	10.01	4.66	8.20	3.93	8.29	22.98	18.13	2.54	6.36	2.40	11.8	0.8

С

b

	TREN	PAD G1	PAD G2
Mass ratio of Au (%)	90.5	84.0	84.0

Figure S3. (a) XPS spectra, (b) atomic ratios, and (c) mass ratio analysis of (TREN/TOABr-Au NP)₁₀, (PAD-G1/TOABr-Au NP)₁₀, and (PAD-G2/TOABr-Au NP)₁₀ multilayers deposited onto Si wafers. Mass ratios were calculated from multiplying the atomic mass by the atomic ratio.

Figure S4. UV-vis spectra of (a) TOABr-Au NPs in toluene, (b) $(TREN/TOABr-Au NP)_n$, (c) $(PAD-G1/TOABr-Au NP)_n$, and (d) $(PAD-G2/TOABr-Au NP)_n$ multilayers as a function of the bilayer number (n).

Figure S5. Electrical Conductivity of (a) (PEI ($M_w \sim 800$)/TOABr-Au NP)_n and (b) (PEI ($M_w \sim 25,000$)/TOABr-Au NP)_n multilayers as a function of bilayer number (n).

Figure S6. Plot of $ln\sigma vs T^{-1/2}$ for the tunneling mechanism of (a) (PAD-G2/TOABr-Au NP)₁₀, (b) (PAD-G1/TOABr-Au NP)₁₀, and (c) (TREN/TOABr-Au NP)₁₀ multilayer films. In the case of Figure S5c, the conductivity ($ln \sigma$) as a function of $T^{-1/2}$ (for hopping) for the (TREN/TOABr-Au NP)₁₀ multilayers do not correspond to a linear dependence, suggesting metallic conduction between the adjacent Au NPs (see Figure 2).

Figure S7. ATR-FTIR spectra of (a) (pH 8 TREN/TOABr-Au NP)_n, (b) (pH 11 TREN/TOABr-Au NP)_n, and (c) (TREN in ethanol/TOABr-Au NP)_n multilayers as a function of the bilayer number (n).

Figure S8. SEM images of (a) (TREN in ethanol/TOABr-Au NP)_n, (b) (pH 11 TREN/TOABr-Au NP)_n, and (c) (pH 8 TREN/TOABr-Au NP)_n multilayer films with increasing the bilayer number (n) from 2 to 10.

Figure S9. Resistances $((R_{(T)}/R_{(0)})$ vs. temperature (K)) of (a) (pH 8 TREN/TOABr-Au NP)₁₀ and (b) (pH 11 TREN/TOABr-Au NP)₁₀ multilayers-coated onto quartz glass. As the temperature was decreased from 300 to 2 K, the electrical resistivity of both (pH 11 TREN/TOABr-Au NP)₁₀ and (pH 8 TREN/TOABr-Au NP)₁₀ multilayers were linearly decreased showing typical metallic conduction behavior. These TREN-based multilayers showed a positive temperature coefficient of 2.22×10^{-4} K⁻¹ and 6.03×10^{-4} K⁻¹, respectively. In this case, temperature coefficient was obtained by following equation: $\Delta R_T/R_0 = \alpha \Delta T$, where ΔR_T (i.e., $(R_T-R_0)/R_0$, where R_T and R_0 are resistance at temperature T and 2 K, respectively) and α are the resistance (Ω) and the temperature coefficient, respectively.

Figure S10. (a) Thicknesses of $(DETA/TOABr-Au NP)_n$ multilayers as a function of the bilayer number (n). The inset shows the cross-sectional FE-SEM images of multilayers. (b) Thickness of $(DETA/TOABr-Au NP)_{10}$ multilayers measured from atomic force microscopy (AFM). The difference of the thickness of $(DETA/TOABr-Au NP)_{10}$ multilayers measured from SEM and AFM is negligible.

Figure S11. TGA data for the (a) $(DETA/TOABr-Au NP)_n$ and (b) $(TREN/TOABr-Au NP)_n$ multilayer films.

Figure S12. ATR-FTIR spectra of (DETA/TOABr-Au NPs)_n multilayers as a function of the bilayer number (n).

TREN in EtOH

Figure S13. FE-SEM images of $(TREN/TOABr-Au NP)_n$ multilayers with increasing the bilayer number (n).

Figure S14. Plots of $ln\sigma$ vs T^{-1/2} for the tunneling mechanism of (DETA/TOABr-Au NP)₁₀ multilayer films. In this case, the conductivity ($ln \sigma$) as a function of $T^{-1/2}$ (for tunneling) for these multilayers does not follow a linear dependence.

Figure S15. (a) DFT-computed adsorption energy (E_{abs}) of organic linkers between Au surfaces as a function of separation distance (*h*). The red and dashed lines represent the adsorption energies of TREN and DETA on the single Au surface, respectively. Geometry-optimized molecular structures of (b) TREN and (c) DETA at the separation distance h = 7Å.

Figure S16. Peeling test of (DETA/TOABr-Au NP)_n multilayer-coated Si wafer using scotch tape. After the peeling tests of 500 cycles, the electrical conductivity (σ) of multilayers maintained 73 % of initial conductivity (σ_0).

Au NP-coated A4 paper 1.7 Ω sq⁻¹

Figure S17. Photographic images of (a) a bare A4 paper (29.7cm x 21.0cm) and a $(DETA/TOABr-Au NP)_{10}$ multilayer-coated (29.7cm x 21.0cm) A4 paper and (b) a LED connected through the $(DETA/TOABr-Au NP)_{10}$ multilayer-coated A4 paper.

b

а

	Meterial		Resistance	Conductivity	Ref.	
	Material	metnoa	(Ω·sq⁻¹)	(S⋅cm ⁻¹)		
	Au NP	Layer-by-layer assembly	1.7	2.2 × 10 ⁵	Our work	
	Dt ND	Self-assembly		2.5 × 10 ⁻³	2	
	FUNF	Pyrolysis	-	400 (pyrolysis)	2	
	Au NP	the Langmuir-Blodgett method	-	5.0 × 10 ⁻³	6	
Metal	Au NP	Layer-by-layer assembly	-	1.1 × 10 ⁴	17	
Nanomaterial	Ag NW	Vacuum filtration	< 10	5.0 × 10 ⁴	19	
	Cu	Electroless deposition	-	1.6 × 10 ⁵	54	
	Cu	Electroless deposition	0.01	1.0 × 10 ³	55	
	Ag flake	Stencil printing	-	738	56	
	Cu NW/NP	Flash light-sintering	-	4.4 × 10 ⁴	57**	
	MXene	Spin coating	-	9.9 × 10 ³	58	
	SWNT	Dip-coating	-	57	59	
Carbon based	Graphene	Chemical vapour deposition	280	-	60	
material	CNT forest	Drop-casting	-	0.5 – 1.0	61	
matorial	SWNT	Dip-coating	< 1	125	62	
	Cranhana	Roll-to-roll production	125		62	
	Старнене	Wet chemical doping	- 30 (doping)		05	

Supporting Table S1. Electrical property comparison of metal and carbon-based electrodes.

* PDMS: poly(dimethylsiloxane)

** Electrical conductivity was evaluated from given data in the literature.