Supplementary Information

Stitchable Supercapacitors with High Energy Density and High Rate Capability Using Metal Nanoparticle-Assembled Cotton Threads[†]

Dongyeeb Shin^a, Cheong Hoon Kwon^a, Yongmin Ko^{a,b}, Byeongyong Lee^b, Seung Woo Lee^{*b} and Jinhan Cho^{*a}

^aDepartment of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. *E-mail: jinhan71@korea.ac.kr

^bThe George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. *E-mail: <u>seung.lee@me.gatech.edu</u>.

Fig. S1 HR-TEM image of the TOABr-Au NPs.

Fig. S2 Characteristic FTIR spectra of the TOABr-Au NPs and TREN.

Fig. S3 Cross-sectional FE-SEM images of the (TREN/TOABr-Au NP)₂₀-coated cotton threads.

Fig. S4 (a) Film thickness, (b) frequency and mass change of the (TREN/TOABr-Au NP)_n multilayers deposited onto nonporous flat substrates as a function of the bilayer number (n). (c) Photographs and FE-SEM images of the (TREN/TOABr-Au NP)₂₀ multilayers deposited onto nonporous flat substrates.

Fig. S5 (a) XPS spectra analysis of (TREN/TOABr-Au NP)₂₀ multilayers. In this case, the Au 4f XPS spectrum shows the narrow two spin-orbital splitting of Au $4f_{5/2}$ and Au $4f_{7/2}$, and these characteristic peaks can also be deconvoluted into two pairs of spectra derived from bulk Au (at 87.6 and 83.9 eV) and Au-N bond (at 84.9 and 88.4 eV), respectively.^{S1,S2} Additionally, N 1s spectrum at 399.8 eV is also consistent with previous reports that metal-amine bonds exhibit binding energies in the range of 398 to 400 eV.^{S3,S4} (b) Atomic ratios of (TREN/TOABr-Au NP)₂₀ multilayer.

Fig. S6 Thermogravimetric analysis (TGA) of the (TREN/TOABr-Au NP)₂₀ multilayer with a heating rate of 5° C min⁻¹ under nitrogen environment.

(a)

Fig. S7 (a) Resistance and (b) electrical conductivity of the (TREN/TOABr-Au NP)_n and (PEI/TOABr-Au NP)_n multilayer-coated cotton threads as a function of the bilayer number (n).

Fig. S8 Nyquist plots of the (TREN/TOABr-Au NP)₂₀ and (PEI/TOABr-Au NP)₂₀ multilayercoated cotton threads.

Fig. S9 (a) HR-TEM images of the OA-Fe₃O₄ NPs and (b) OA-MnO NPs.

Fig. S10 (a) XPS analysis of the (TREN/OA-Fe₃O₄ NPs)₂₀ and (b) (TREN/OA-MnO NPs)₂₀ multilayers. The Fe2p spectrum of (TREN/OA-Fe₃O₄ NP)₂₀ multilayer exhibits two characteristic peaks at 710.8 eV for Fe2p_{3/2} and 724.5 eV for Fe2p_{1/2}.^{S5,S6} These Fe2p spectra can further be deconvoluted into two spectra of Fe²⁺ (710.7 and 724.3 eV) and Fe³⁺ (712.3 and 728.8 eV) of Fe species. In this case, the absence of a satellite peak at 717.2 eV was ascribed to a typical characteristic of Fe₃O₄.^{S6,S7} The Mn2p spectrum of (TREN/OA-MnO NP)₂₀ multilayer showed two spin-orbitals of Mn 2p_{3/2} (641.3 eV) and Mn 2p_{1/2} (653.3 eV) involving multivalent Mn species (Mn²⁺, Mn³⁺, and Mn⁴⁺), indicating the typical oxidation state of MnO.^{S8,S9,S10} Furthermore, the N 1s peaks of the OA-Fe₃O₄- and MnO NP-based multilayers in the ranges of 398 – 400 eV also demonstrate the metal-N bonds.^{S3,S4}

Fig. S11 (a) TGA of the Fe₃O₄ NPs-based and (b) MnO NPs-based thread electrodes with a heating rate of 5°C min⁻¹ under nitrogen environment. The residual amounts of the cotton thread, MCT, 40-Fe₃O₄ NP/MCT and 40-Fe₃O₄-Au NP/MCT were measured to be approximately 0.095 mg·cm⁻¹ (15.4 %, **ash**), 0.57 mg·cm⁻¹ (52.3 %, **ash** + **20-Au** NP), 0.88 mg·cm⁻¹ (62.2 %, **ash** + **20-Au** NP + **40-Fe₃O₄** NP), and 1.31 mg·cm⁻¹ (70.8 %, **ash** + **20-Au** NP + **40-Fe₃O₄** NP), respectively. In case of 40-MnO NP/MCT and 40-MnO-Au NP/MCT, their residual amounts were estimated to be 0.85 mg·cm⁻¹ (61.4 %, **ash** + **20-Au** NP + **40-MnO** NP + **40-M**

Fig. S12 CV scans of the 40-Fe₃O₄-Au NP/MCT over different potential regions from 0.5 to 1.4 V at a scan rate 5 mV s⁻¹.

(b)

(a)

Fig. S13 (a) CV scans and (b) capacitance of the m-Fe₃O₄-Au NP/MCT electrodes as a function of the total Fe₃O₄ NP layer number (m) at a scan rate of 5 mV s⁻¹.

Fig. S14 Cross-sectional FE-SEM images of the 40-Fe₃O₄-Au NP/MCT and 40-MnO-Au NP/MCT electrodes.

Fig. S15 CV scans of the 40-Fe₃O₄-Au NP/MCT electrodes at varied scan rate from 5 to 500 mV s⁻¹.

Fig. S16 (a) FE-SEM and EDS mapping images of the 40-MnO-Au NP/MCT electrodes. (b) CV scans of the MCT, 40-MnO NP/MCT, and 40-MnO-Au NP/MCT electrodes at a scan rate of 5 mV s⁻¹. (c) Nyquist plots of the 40-MnO NP/MCT and 40-MnO-Au NP/MCT electrodes. (d) Areal and volumetric capacitances of the 40-MnO NP/MCT and 40-MnO-Au NP/MCT electrodes as a function of the total MnO NP layer number (m) at a scan rate of 5 mV s⁻¹. (e) CV scans of the 40-MnO-Au NP/MCT electrodes with increasing scan rate from 5 to 500 mV s⁻¹. (f) Areal and volumetric capacitances of the 40-MnO NP/MCT and 40-MnO-Au NP/MCT and 40-MnO-Au NP/MCT electrodes as a function of the scan rate.

Fig. S17 CV scans of the 40-Fe₃O₄-Au NP/MCT and 40-MnO-Au NP/MCT electrodes at a scan rate of 5 mV s⁻¹. The charge balance ($q^+ = q^-$) between the 40-Fe₃O₄-Au NP/MCT (negative electrode) and 40-MnO-Au NP/MCT (positive electrode) follows the relationship: S11

$$A^+/A^- = C^-\Delta V^-/C^+\Delta V^+ (q = C \times \Delta V \times A)$$

where *q* is the stored charge, *C* is the specific capacitance, ΔV is the voltage window, and *A* is the surface area of the electrode. On the basis of this equation, the length ratio between the two electrodes (i.e., L(Fe₃O₄)/L(MnO)) was calculated to be approximately 0.95.

Fig. S18 GCD curves of the Au NP-incorporated 1D-ASCs tested at different voltages from 0.8 to 1.8 V at a current density of 0.6 mA cm⁻².

Fig. S19 Areal capacitances and Coulombic efficiency of the Au NP-incorporated 1D-ASCs at different current densities from 0.3 to 6.0 mA cm^{-2} .

Fig. S20 Nyquist plots of the Au NP-incorporated 1D-ASC and 1D-ASC without Au NPs.

Negative	Positive	Length	Electrolyte	Potential	СА	Cv	CL	См	EA	PA	Ref.
electrode	electrode	of		(V)	(mF·cm ⁻²)	(F • cm ⁻³)	(mF·cm ⁻¹)	(F •g ⁻¹)	(µWh⋅cm ⁻²)	(µW⋅cm ⁻²)	
		electrode (cm)							Ev	Pv	
		(CIII)							(mWh·cm ⁻³)	(mW·cm ⁻³)	
									\mathbf{E}_{L}	$\mathbf{P}_{\mathbf{L}}$	
									(µWh∙cm ⁻¹)	(µW⋅cm ⁻¹)	
									EM	Рм	
									(mWh·g ⁻¹)	(mWh·g ⁻¹)	
Fe ₃ O ₄ -Au NP	MnO-Au NP	1.5	Na_2SO_4	1.8	179.2	27.9	28.6	7.8	E _A : 80.7	P _A : 3450.1	Our
/MCT	/MCT		/PVA		at 0.3mA·cm ⁻²	at 0.3mA·cm ⁻²	at 0.3mA·cm ⁻²	at 0.3mA·cm ⁻²	E _v : 12.6	P _V : 537.7	work
									$E_L: 12.9$	P _L : 552.1	
					160.0	26.2	27.0		L _M . 5.5	1 M. 150.5	
		1.5			169.0	20.3	27.0		E _A : 76	P _A : 457.5	
					at 0.8mA·cm ⁻²	at 0.8mA·cm ⁻²	at 0.8mA·cm ⁻²				
		20			136.7	21.3	21.9		E _A : 61.5	P _A : 457	
		20			at 0.8mA·cm ⁻²	at 0.8mA·cm ⁻²	at 0.8mA·cm ⁻²				
CNPs	CNPs	1.5	H ₃ PO ₄	0.8		0.00379	-		Ev: 8.4x10 ⁻⁵	Pv: 0.0564	S12
/rGO-CT	/rGO-CT		/PVA			at 50mV·s ⁻¹					
GHs	GHs	1	H_3PO_4	0.8	-	-	0.097		E _L : 4.79x10 ⁻³	P _L : 1.25	S13
/MWCNTs-CT	/MWCNTs-CT		/PVA				at 2mV·s ⁻¹				
rGO/Ni-CT	rGO/Ni-CT	3.5	LiCl	0.8	-	68.2	110	311	E _v : 6.1	P _V : 1400	25
PPy/MnOa	PP _v /MnO ₂		HaPO	0.8		at 50mv·s ⁺	$\frac{\text{at 50mV} \cdot \text{s}^{-1}}{1490}$	at 50m V·s ⁻¹	F.: 33	P. 13000	60
/CNT-CT	/CNT-CT	-	/PVA	0.0	-	-	at $1 \text{mV} \cdot \text{s}^{-1}$		E _A . 55	I A. 15000	00
OMC-MnO ₂	OMC-MnO ₂	5	Li ₂ SO ₄ /	1.5	1100	35.2	_		E _v : 2.7	P _V : 300	S14
/CVD gr-CT	/CVD gr-CT		BMIMCl		at 4.3mA·cm ⁻²	at 4.3mA·cm ⁻²					
			/PVA	1				266	E + 0.20	D . 01000	22
IGO/ SWNT@KTP	IGO/ SWNT@KTP	-	H2SO4 /PVA	1				300 at 25mV·s ⁻¹	Ev: 0.29 Ex: 0.0117	Pv: 91000 PM: 3700	23
rGO	rGO	-	H ₃ PO ₄	0.8	49.4	-	8.9	at 25111 V 3	$E_{\rm A}: 1.6$	P _A : 2420	36
/Ni-polyester	/Ni-polyester		/PVA		at 1mA·cm ⁻²		at 1mA·cm ⁻²				
CF	CF	3	LiCl	1.2	-	_	32		E _v : 6.8	_	26
	-	-	/PVA						E _M : 0.052	P _M : 0.407	

Table S1. Comparison of electrochemical performance of solid-state fiber (or thread) type SCs in two-electrode measurement.

							at 0.8mA·cm ⁻¹				
Activated CF	Activated CF	-	H ₃ PO ₄ /PVA	1.0	-	2.55 at 10mV·s ⁻¹	-		E _v : 0.35	P _V : 3000	S15
MWCNT /CMF	CNF film	-	H ₃ PO ₄ /PVA	1.0	86.8 at 2mV⋅s ⁻¹		6.3 at 2mV·s ⁻¹		E _A : 9.8 E _L : 0.7	P _A : 8070 P _L : 583	S16
Graphene fiber	Graphene fiber	-	H ₂ SO ₄ /PVA	0.8	390 at 2mV·s ⁻¹	78at 2mV·s ⁻¹		350 at 2mV·s ⁻¹	E _V : 6.6	P _V : 49	S17
Biscrolled rGO/CNT	Biscrolled MnO/CNT	-	LiCl /PVA	1.2	382.2 at 2.3mA⋅cm ⁻²	104.7 at 2.3mA·cm ⁻²	17.7 at 2.3mA·cm ⁻²	165.6 at 2.3mA⋅cm ⁻²	E _A : 35.8		24
CF	MnO ₂ /ZnO NWs/CF	-	H ₂ SO ₄ /PVA	1.8	31.15 at10 μA	-	-		E _A : 13.25	P _A : 2120	61
CNT /Carbon paper	MnO ₂ /Au wire	-	LiCl /PVA	1.8	12 at 0.3mA·cm ⁻²	-	-		E _A : 5.4	P _A : 2531	62
PPy@CNT film	MnO ₂ /CF	-	KOH /PVA	1.5	60.43 at 10mV·s ⁻¹	9.46 at 10mV·s ⁻¹	19.86 at 10mV·s ⁻¹	7.72 at 10mV·s ⁻¹	E _A : 18.88 E _V : 2.98 E _L : 6.20	-	63
MnO ₂ /CNT yarn	MnO ₂ /CNT yarn	-	KOH /PVA	0.9	-	25.4 at 10mV·s ⁻¹	-		E _V : 3.52	P _V : avg. 127	S18
Fe ₂ O ₃ @C /CF	MnO ₂ /AuPd /CuO /Cu wire	-	LiCl /PVA	1.6	-	2.46 at 130mA·cm ⁻³	-		E _V : 0.85	-	33
GH /Copper wire	MnO ₂ /RGO /CF	-	KCl /PAKK	1.6	50.8 at 0.2mA·cm ⁻²	2.54 at 0.2mA·cm ⁻²	-		E _A : 18.1 E _V : 0.9	P _V : 200	34
rGO/Au wire	rGO/Au wire	2	H ₃ PO ₄ /PVA	1.0	0.726 at 2.5µA⋅cm ⁻¹	-	0.0114 at 2.5µA⋅cm ⁻¹		-	-	31
MnO ₂ /PPy /rGO /Steel fiber	MnO ₂ /PPy /rGO /Steel fiber	-	H ₃ PO ₄ /PVA	0.8	103 at 11mA·cm ⁻³	12.4 at 11mA·cm ⁻³	-		E _A : 9.2 E _V : 1.1	P _A : 1330 P _V : 160	30
C@Fe ₃ O ₄ /Steel fiber	PEDOT@MnO ₂ /Steel fiber	10	LiCl /PVA	2.0	60 at 0.9mA	7.23 at 0.9mA	-		E _A : 33.5 E _V : 4.02 E _L : 5	-	32
NiCo ₂ O ₄ /Ni wire	NiCo ₂ O ₄ /Ni wire	-	KOH /PVA	1.0	-	1.86 at 0.1mA	-	18.8 at 0.1mA	E _V : 0.21 E _M : 2.18	P _v : 15.5 P _M : 157.5	35

*MCT: metallic cotton thread *CT: cotton thread *CF: carbon fiber *GH: graphene hydrogel *CMC: carboxymethyl cellulose sodium

*CNP: carbon nanoparticle *CMF: carbon microfiber *CNF: carbon nanofiber *AC: activated carbon

Fig. S21 Ragone plots of the volumetric energy and power density of the Au NP-incorporated 1D-ASCs compared with the solid-state fiber (or thread)-type SCs reported by other research groups.

Notes and references

- S1 A. Devia, H.A. Castillo, V.J. Benavides, Y.C. Arango, J.H. Quintero, *Mater. Charact.*, 2008, 59, 105-107.
- S2 T. D. Thanh, J. Balamurugan, S. H. Lee, N. H. Kim, J. H. Lee, *Biosens. Bioelectron.*, 2016, 81, 259-267.
- S3 D. Wilson and M. A. Langell, *Appl. Surf. Sci.*, 2014, **303**, 6-13.
- S4 J. Sharma, S. Mahima, B. A. Kakade, R. Pasricha, A. B. Mandale and K. Vijayamohanan, J. Phys. Chem. B, 2004, 108, 13280-13286.
- S5 W. Lu, M. Ling, M. Jia, P. Huang, C. Li and B. Yan, *Mol. Med. Rep.*, 2014, 9, 1080-1084.
- S6 M. Guo, J. Balamurugan, X. Li, N. H. Kim and J. H. Lee, *Small*, 2017, **13**, 1701275.
- S7 M. M. Vadiyar, X. Liu and Z. Ye, *Chem-SusChem*, 2016, **9**, 932-937.
- S8 C.-T. Hsieh, C.-Y. Lin and J.-Y. Lin, *Electrochim. Acta*, 2011, **56**, 8861-8867.
- S9 Y. Zhang, P. Chen, X. Gao, B. Wang, H. Liu, H. Wu, H. Liu and S. Dou, Adv. Funct. Mater., 2016, 26, 7754-7765.
- S10 L. Li, X. Zhang, G. Wu, X. Peng, K. Huo and P. K. Chu, Adv. Mater. Interfaces, 2015, 2, 1400446.
- S11 V. Khomenko, E. Raymundo-Piñero, F. Béguin, J. Power Sources, 2006, 153, 183-190.
- S12 X. Ye, Q. Zhou, C. Jia, Z. Tang, Z. Wan, X. Wu, *Electrochim. Acta*, 2016, 206, 155-164.
- S13 Q. Zhou, C. Jia, X. Ye, Z. Tang, Z. Wan, J. Power Sources, 2016, 327, 365-373.
- S14 J. Zhi, O. Reiser, Y. Wang, A. Hu, Nanoscale, 2017, 9, 6406-6416.

- S15 D. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, Y. Chen, *Adv. Mater.*, 2015, 27, 4895-4901.
- S16 V. T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q. A. Vu, D. T. Pham, J.-H. Lee, S.-W.
 Kim and Y. H. Lee, *ACS Nano*, 2013, 7, 5940-5947.
- S17 I. Marriam, X. Wang, M. Tebyetekerwa, G. Chen, F. Zabihi, J. Pionteck, S. Peng, S. Ramakrishna, S. Yang and M. Zhu, *J. Mater. Chem. A*, 2018, 6, 13633-13643.
- S18 C. Choi, J. A. Lee, A. Y. Choi, Y. T. Kim, X. Lepró, M. D. Lima, R. H. Baughman, S. J. Kim, *Adv. Mater.*, 2014, 26, 2059-2065.