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Fig. S1 FTIR spectra of pristine OAm-WO2.72 NRs and TREN. In the case of OAm-WO2.72 

NRs, the C−H stretching peaks (ca. 2,926 and 2,854 cm−1) and the W−O stretching peaks (ca. 

927 and 870 cm−1) derived from the long alkyl chains of OAm ligands and WO2.72 NRs, 

respectively, are detected. However, in the case of TREN, there are no distinct absorption peaks 

at those ranges.
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Fig. S2 Cross-sectional FE-SEM images and the corresponded thickness of (WO2.72 

NR/TREN)n multilayers as a function of bilayer number (n).
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Fig. S3 Enlarged planar FE-SEM image of (WO2.72 NR/TREN)40 multilayers. As shown in the 

image, the continuous deposition of NR-type WO2.72 forms a porous structure due to the random 

packing effects, which can facilitate an intercalation of Li+ ions and an incorporation of 

additional transparent/conductive ITO NPs.
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Fig. S4 Optical transmittance spectra of (WO2.72 NR/TREN)n multilayers as a function of 

bilayer number (n) under applied potentials ranging from − 1.0 V to − 4.0 V. The optical 

modulations are obtained from the variations of transmittance between bleached state (+ 4.0 V) 

and colored state (− 4.0 V) at a wavelength of 633 nm. (a) n = 10, (b) n = 20, (c) n = 30, and 

(d) n = 40. 
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Fig. S5 Stability test of (WO2.72 NR/TREN)20 multilayers under alternating potentials of − 4.0 

V and + 4.0 V for 30 s interval.
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Fig. S6 (a) Cyclic voltammograms of (WO2.72 NR/PEI)20 multilayers in a scan rate ranging 

from 10 to 100 mV s−1. (b) Square root of scan rates (v1/2)-dependent redox peak current 

densities (Ip) from CV curves of (WO2.72 NR/TREN)20 and (WO2.72 NR/PEI)20 multilayers.
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Fig. S7 Optical transmittance spectra of (WO2.72 NR/PEI)20 multilayers at colored state (from 

− 1.0 V to − 4.0 V). In this case, the optical modulations between bleached state (+ 4.0 V) and 

colored state (− 4.0 V) at a wavelength of 633 nm is measured to be 35.1%.
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Fig. S8 (a) FTIR spectra of pristine OAm-ITO NPs and TREN. (b) FTIR spectra and schematic 

representation of (ITO NP/TREN)n multilayers as a function of bilayer number (n). The C−H 

stretching peaks originated from the long alkyl chains of OAm ligands at 2,926 and 2,854 cm−1 

appeared and disappeared repeatedly according to the alternating deposition of OAm-ITO NPs 

and TREN. These phenomena imply a formation of (ITO NP/TREN)n multilayers through 

ligand-exchange reactions between OAm ligands and TREN.

a

b



10

Fig. S9 Magnified planar FE-SEM image of (WO2.72 NR/TREN/ITO NP/TREN)20 multilayers. 

As shown in the image, the formed multilayers still exhibited nanoporous structure after the 

incorporation of ITO NPs, facilitating the diffusion of Li+ ions into the EC films.
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Fig. S10 Cyclic voltammograms of (WO2.72 NR/TREN/ITO NP/TREN)20 multilayers in a scan 

rate ranging from 10 to 100 mV s−1.
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Fig. S11 (a) Cyclic voltammograms at a scan rate of 100 mV s−1 and (b) Nyquist plots of WO2.72 

NR-based EC films with ITO NPs (m = 20), without ITO NPs (n = 20), and the pristine ITO 

NP films.
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Fig. S12 Optical transmittance spectra of (WO2.72 NR/TREN/ITO NP/TREN)m multilayers with 

increasing periodic number (m) under applied potentials ranging from − 1.0 V to − 4.0 V. The 

optical modulations between bleached state (+ 4.0 V) and colored state (− 4.0 V) at a 

wavelength of 633 nm are also shown. (a) m = 10, (b) m = 20, (c) m = 30, and (d) m = 40.
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Fig. S13 Comparison of optical modulations at a wavelength of 633 nm between (WO2.72 

NR/TREN)n and (WO2.72 NR/TREN/ITO NP/TREN)m multilayers as a function of bilayer (n) 

or periodic (m) number. The WO2.72 NR-based EC films with ITO NPs exhibit the higher optical 

modulations at the same layer number of WO2.72 NRs compared to the EC films without ITO 

NPs.
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Fig. S14 Photographic images of electrochromic (WO2.72 NR/TREN)n and (WO2.72 

NR/TREN/ITO NP/TREN)m multilayers under applied potentials of + 4.0 V (bleached state) 

and − 4.0 V (colored state). In this case, the WO2.72 NR-based EC films with ITO NPs display 

a deeper color change than the EC films without ITO NPs.
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Fig. S15 (a) CEs of (WO2.72 NR/TREN/ITO NP/TREN)m multilayers as a function of periodic 

number (m). (b) Comparison of CEs between (WO2.72 NR/TREN)n and (WO2.72 NR/TREN/ITO 

NP/TREN)m multilayers at the same layer number of WO2.72 NRs.
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Fig. S16 Cycling retention test of (WO2.72 NR/TREN/ITO NP/TREN)20 multilayers under 

alternating potentials of − 4.0 V and + 4.0 V for 30 s interval.
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Table S1. Comparison of EC performance of WOx-based films in lithium-based electrolytes.

Electrodes Method tc (s) tb (s) ΔT (%) CE (cm2/C) Reference

(WO2.72 NR/TREN
/ITO NP/TREN)10

LbL assembly 4.1 1.5 32.0
at 633 nm 33.2 Our work

(WO2.72 NR/TREN
/ITO NP/TREN)20

LbL assembly 5.0 3.0 41.6
at 633 nm 41.5 Our work

(WO2.72 NR/TREN
/ITO NP/TREN)30

LbL assembly 8.2 11.4 52.9
at 633 nm 48.9 Our work

(WO2.72 NR/TREN
/ITO NP/TREN)40

LbL assembly 10.9 15.2 55.8
at 633 nm 55.2 Our work

WO2.72 NW films Langmuir-Blodgett 10 2 11.5
at 633 nm** - S1

WO2.72 NW films Langmuir-Blodgett 30 16 49.2
at 633 nm** - S1

MoO3-W0.71Mo0.29O3
hybrid films* Drop casting 17.2 28.4 41.9

at 633 nm 19.0 S2

WO3/Ag/WO3
films

Sputtering
deposition 15.9 6.6 35.5

at 650 nm 28.3 S3

P8W48/W18O49
nanocomposites* LbL assembly 52 26 39.0

at 500 nm** 21.4 S4
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W0.71Mo0.29O3/PEDOT:PSS
nanocomposites

Spray 
LbL assembly 17.9 10.5 65.1

at 633 nm 52.8 S5

Hyperbranched
WO3 films

Pulsed laser 
deposition 0.9 55 67.3

at 660 nm 65.4 S6

Dual-phase
a-WO3/WO3 films

Inkjet
printing 5 5 12.8

at 633 nm** 3.12 S7

WO3 films Langmuir-Blodgett  >3.6 >3.1 25.9
at 630 nm 71.3 S8

[WO2(O2)H2O]•1.66H2O
films

Electrophoretic
deposition 7.8 1.7 32.0

at 632 nm 11.5 S9

PEI/WO3 nanosheets
nanocomposites LbL assembly 660 11 37.5

at 633 nm** 32.0 S10

* Mo: Molybdenum, P8W48: K28Li5H7P8W48O184•92H2O polyoxometalates.
** EC performance was evaluated from given data in the literature.
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